Basic understanding of posterior probability
نویسندگان
چکیده
Consider the following task [Task A] A prenatal test determines whether an unborn child has a chromosomal anomaly. A priori, namely, before undergoing the test, a pregnant woman has a 4% chance of having a child with the anomaly. If a woman has a child with the anomaly, there is a 75% chance that she has a positive test result. If she does not have a child with the anomaly, there is still a 12.5% chance that she has a positive test result. Emma, a pregnant woman, undergoes a prenatal test. The result is positive. What is the probability that she has a child with the anomaly? To answer correctly, one has to integrate the prior probability that a woman has a child with the anomaly (i.e., the prevalence rate: 4%) with information about the test's statistical properties. On the basis of this information and the evidence that Emma tested positive, one can produce a correct posterior evaluation by computing the ratio: Probability (Anomaly|Positive Test Result) = Probability (" Positive Test Result and Anomaly ")/ Probability (" Positive Test Result "). To obtain the numerator, one has to combine the prevalence rate and the test's sensitivity rate (i.e., 4% × 75% = 3%). To obtain the denominator, one has to combine the complement of the prevalence rate and the false positive rate (i.e., 96% × 12.5% = 12%), and then add it to the initially obtained value (i.e., 3% + 12% = 15%). Very few respondents, including health-care professionals, produce the correct probability ratio (i.e., 3%/15% = 20%). Failures to solve tasks of this sort lead to pessimistic conclusions about naive probabilistic reasoning (e.g., Casscells et al., 1978). Subsequent studies, however, licensed more optimistic conclusions, showing that some versions of these tasks led to better performances. About half of the respondents succeed when reasoning with natural frequencies (e.g., " Three out of the 4 women who had a child with the anomaly had a positive test result ") or numbers of chances (e.g., " In 3 out of the 4 chances of having a child with the anomaly the test result is positive " ; see, respectively, Hoffrage and Gigerenzer, 1998; Girotto and Gonzalez, 2001). On the basis of these results, the current, common account is that posterior probability reasoning improves in versions that allow respondents to both rely on an appropriate representation of subsets of countable elements (e.g., observations, …
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملTesting a Point Null Hypothesis against One-Sided for Non Regular and Exponential Families: The Reconcilability Condition to P-values and Posterior Probability
In this paper, the reconcilability between the P-value and the posterior probability in testing a point null hypothesis against the one-sided hypothesis is considered. Two essential families, non regular and exponential family of distributions, are studied. It was shown in a non regular family of distributions; in some cases, it is possible to find a prior distribution function under which P-va...
متن کاملChildren ’ s understanding of posterior probability q
Do young children have a basic intuition of posterior probability? Do they update their decisions and judgments in the light of new evidence? We hypothesized that they can do so extensionally, by considering and counting the various ways in which an event may or may not occur. The results reported in this paper showed that from the age of five, children’s decisions under uncertainty (Study 1) a...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملAnatomical, histological and histomorphometric study of the intestine of the northern pike (Esox lucius)
Background: The northern pike Esox lucius is a fresh water species belonging to the Esocidae family. It is a carnivorous fish which mostly feeds on invertebrates and fishes. The morphology of its intestine is very useful for understanding the fish’s digestive physiology, diagnosing some intestinal diseases and formulating suitable feeds. OBJECTIVES: This study was designed to determine the anat...
متن کاملComparison between Frequentist Test and Bayesian Test to Variance Normal in the Presence of Nuisance Parameter: One-sided and Two-sided Hypothesis
This article is concerned with the comparison P-value and Bayesian measure for the variance of Normal distribution with mean as nuisance paramete. Firstly, the P-value of null hypothesis is compared with the posterior probability when we used a fixed prior distribution and the sample size increases. In second stage the P-value is compared with the lower bound of posterior probability when the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015